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Mass localization plays a crucial role in computer-aided detection �CAD� systems for the classifi-
cation of suspicious regions in mammograms. In this article we present a completely automated
classification system for the detection of masses in digitized mammographic images. The tool
system we discuss consists in three processing levels: �a� Image segmentation for the localization of
regions of interest �ROIs�. This step relies on an iterative dynamical threshold algorithm able to
select iso-intensity closed contours around gray level maxima of the mammogram. �b� ROI char-
acterization by means of textural features computed from the gray tone spatial dependence matrix
�GTSDM�, containing second-order spatial statistics information on the pixel gray level intensity.
As the images under study were recorded in different centers and with different machine settings,
eight GTSDM features were selected so as to be invariant under monotonic transformation. In this
way, the images do not need to be normalized, as the adopted features depend on the texture only,
rather than on the gray tone levels, too. �c� ROI classification by means of a neural network, with
supervision provided by the radiologist’s diagnosis. The CAD system was evaluated on a large
database of 3369 mammographic images �2307 negative, 1062 pathological �or positive�, contain-
ing at least one confirmed mass, as diagnosed by an expert radiologist�. To assess the performance

of the system, receiver operating characteristic �ROC� and free-response ROC analysis were
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employed. The area under the ROC curve was found to be Az=0.783±0.008 for the ROI-based
classification. When evaluating the accuracy of the CAD against the radiologist-drawn boundaries,
4.23 false positives per image are found at 80% of mass sensitivity. © 2006 American Association
of Physicists in Medicine. �DOI: 10.1118/1.2214177�

Key words: breast cancer, mammographic mass detection, image processing, computer-aided de-
tection �CAD�, textural features, neural network
I. INTRODUCTION

The analysis of medical images is gathering, in the last years,
a growing interest from the scientific community working at
the crossover point among physics, engineering, and medi-
cine. The development of computer-aided detection �CAD�
systems for the automated search for pathologies could be
very useful for the improvement of physicians’ diagnosis.

A typical example is the analysis of mammographic im-
ages, which are widely recognized as the only imaging mo-
dality for an early detection of breast neoplasia.1,2 Breast
cancer is reported as the leading cause of woman cancer
deaths in both the United States and Europe. At present,
screening programs are the best known method for an early
diagnosis in asymptomatic women, thus allowing a reduction
of the mortality.3,4 Screening programs are based on a double
visual inspection of the mammographic images, since double
reading increases the diagnostic accuracy.5 From this point of
view, the use of a CAD system could provide valuable assis-
tance to the radiologist.

In the present paper, a CAD system for mass detection
will be discussed. Masses, as well as microcalcification clus-
ters, are often clear marks of a breast neoplasia. While mi-
crocalcifications are small �d�0.1÷1.0 mm of diameter� and
brilliant objects, masses are rather large �d�1 cm of diam-
eter� objects with variable shape and show up with faint con-
trast. These textural characteristics can be exploited both in
the definition of a ROI hunter procedure and in the choice of
the proper features to identify positive regions of the mam-
mogram.

A number of CAD systems have already been proposed to
the attention of the scientific community. Just to mention
only few recent examples, Timp et al.6 discuss an automated
technique based on dynamic programming that allows to
segment mass lesions from surrounding tissue. In addition,
an efficient algorithm is proposed to guarantee that the re-
sulting contour is closed. In Baydush et al.,7 subregion Ho-
telling observers in conjunction with linear discriminants are
investigated for an automated mass detection. The Hotelling
observer is claimed to be a good linear detector when infor-
mation about signal, background, and noise correlation are
known. A knowledge databank of ROIs with known ground
truth is used for a template matching approach in Tourassi et
al.:8 the mutual information is adopted as a similarity metric
to determine if a query depicts a true mass. In Catarious et
al.,9 a CAD system consisting of filtration, suspicious region
localization, feature extraction, feature selection, and classi-
fication stages is presented. This algorithm has been im-

proved by adding a new iterative gray level linear segmen-
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tation procedure.10 All these studies report results that are
difficult to compare since performances of the different algo-
rithms strongly depend on the database.

In a previous study, our group proposed a CAD scheme
based on ROI localization, feature extraction, and neural net-
work classification.11 Suspect regions were detected by
searching for local intensity maxima in rings whose radius
was increased until the average intensity decreased to a pre-
defined fraction of the local maximum. The ROIs thus ob-
tained were described in terms of statistical features like av-
erage, variance, skewness, and kurtosis of the intensity
distributions at different fractions of the ROI radius. This
scheme relied on a simplified and rough description of the
ROI, which was modeled as a round region. An improvement
was achieved by implementing a new edge-based segmenta-
tion algorithm where ROIs are defined by iso-intensity con-
tours rather than circles.12 In this paper we retain the im-
proved version of the segmentation step and replace the
feature set with Haralik’s one.13 The choice for texture-based
features is justified by the successful application of such fea-
tures to the detection of pathologies in medical image
analysis.14,15

Comparing our approach with the previously mentioned
ones, two main aspects should be stressed. Some algorithms
lack an automatic localization of the suspicious regions,
rather they make use of manually selected ROIs. Other algo-
rithms, whose scheme includes a computerized ROI hunter,
lack a large and heterogeneous database to test the perfor-
mance in screening-like conditions. Both these points should
be taken into account in view of the development a com-
pletely automated CAD system, which should assist the ra-
diologists in the framework of a large scale screening pro-
gram. Our CAD meets both these requirements as it fits in
the more general framework of the MAGIC-5 Project �Medi-
cal Application on a Grid Infrastructure Connection� which
focuses on the development of software tools for biomedical
image analysis and their use on distributed image database
by means of the GRID technologies.16,17 Image collection in
a screening program intrinsically creates a distributed data-
base, as it involves many hospitals and/or screening centers
in different locations. The amount of data generated by such
periodic examinations would be so large that it would not be
efficient to concentrate them in a single computing center. In
addition, it would linearly increase with time, and a full
transfer over the network from the collection centers to a
central site would likely saturate the available connections.
However, making the whole database available to authorized
users, regardless of the data distribution, would provide sev-

eral advantages. The best way to tackle these demands is to
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use GRID services to manage distributed databases and to
allow real time remote diagnosis. This approach would pro-
vide access to the full database from any site.

II. THE IMAGE DATABASE

The mammograms used in this study were collected in a
network of hospitals that collaborate with the MAGIC-5
project.18,19 Images were acquired using different mammo-
graphic screen/film systems and settings �all with molybde-
num anode� and in the framework of different applications,
including both clinical routine carried out on symptomatic
women and screening programs addressed to asymptomatic
women. All the images were digitized with a CCD scanner at
a pixel size of 85�85 �m2 with 12 bit resolution.20 Each
image is thus 2657�2067 pixels with G=212=4096 gray
level tones. No normalization is applied to the images. The
database consists of 3369 mammograms from 967 analyzed
subjects. Some of the mammograms are different views
�cranio-caudal, lateral, oblique� from the same subject and
are treated as different samples in the analysis. The pie dia-
grams reported in Fig. 1 show the partition of the database in
left/right breast images �left� and cranio-caudal/oblique/
lateral views �right�.

FIG. 1. Database partition. Left: number of left/right breast images. Right:
number of cranio-caudal/oblique/lateral views.
FIG. 2. Number of cases with one to six images.
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Figure 2 displays the number of cases in the database with
one to six images.

We consider positive images the ones that contain at least
one mass, as diagnosed by an expert radiologist and con-
firmed by biopsy; images with no mass at the first exam and
after a follow-up of at least 3 years are considered as nega-
tive, even if they contain some other pathology �e.g., micro-
calcifications�. The breakdown of the cases is displayed in
Fig. 3 for both the images �positive/negative� and the ana-
lyzed subjects �pathological/healthy�. Each positive image
comes with a description of the lesion including radiological
diagnosis, histological data, and type of mass, as shown in
Fig. 4. The total number of masses is 1236. The location and
size of a mass is defined by a radiologist-drawn circle, char-
acterized by center coordinates �Xrad ;Yrad� and radius �Rrad�,
which fully contains the mass. The radius size of the masses
ranges from 3.1 to 47.2 mm with a mean size of 11.7 mm.
Figure 5 shows some images of the database.

As far as the breast background is concerned, we adopt a
tissue classification which is used as a standard by many
Italian radiologists:21,22

• fibro-adipose tissue: indicates a fat breast with little fi-
brous connective tissue;

FIG. 3. Database composition: images �left� and subjects �right�.

FIG. 4. Different kinds of masses present in the database. Legend: IRO
=irregular round opacity, SO=spiculated opacity, RRO=regular round opac-
ity, PS=parenchymal distorsion, and BRO=blurred round opacity; “others”

include a combination of the above mentioned kinds.
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• glandular tissue: indicates the presence of prominent
duct patterns;

• dense tissue: indicates a dense breast parenchyma.

The breast background classification is based only on the
appearance of the parenchyma, without any reference to skin,
vascularity, presence/absence of masses, calcifications,
lymph nodes, nor to parity, history of breast disease, age, and
family history.

Figure 6 reports the background composition of the data-
base. Most of the images are glandularlike: the detection of
pathological structures in this kind of images is a quite hard
task, since the target is surrounded by a “noisy” environ-

FIG. 5. Some ROIs present in the database: �a� spiculated �star-like� o
ment.
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III. METHODS

The CAD system consists of three main steps: �1� seg-
mentation, �2� feature extraction, and �3� classification.

The goal of the segmentation step is to locate, within the
image, the suspicious regions, or ROIs, which are likely to
contain a mass. All the detected ROIs are characterized by a
proper set of features providing texture information on the
pixel intensity. The feature vector describing the ROI will be
identified as “pattern.” In general, a number of ROIs can be
detected with different degrees of superimposition on the
same mass, though not overlapping among them. So, ROI-
to-mass is not a one-to-one mapping. A tagging criterion,

; round opacities with regular �b�, irregular �c�, and blurred �d� edge.
relying on the superimposition with the radiologist-drawn
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boundary, is adopted to define the true positive �TP� ROIs.
These ROIs are used to train the neural network with a
ground truth based on the radiologist’s diagnosis. In the fol-
lowing subsections each of the processing steps is described
in detail.

A. Segmentation method

Prior to the processing, the images are made anonymous
and the borders of the breast are extracted by means of a
threshold algorithm. As the mammograms are digitized with
the breast on the right part of the image, moving on a row of
the mammogram in the right-left direction, a fixed length
segment with pixel intensity less than I=16 is searched, and
all the pixels at the left side of this segment are set at zero
value. By repeating the routine row by row, the contour of
the breast is found, and noninteresting portions of the mam-
mogram are cut off. The accuracy of the border extraction
has been verified case by case.

An edge-based segmentation algorithm for the selection
of the suspicious regions has been implemented.12 The algo-
rithm works as follows:

• the mammogram is divided into square cells of size S
and a relative gray level maximum IM �initial center for
the candidate lesion� is searched in each cell, starting
from the right top cell;

• an iso-intensity contour, including the pixel of the in-
tensity relative maximum, is drawn at a threshold value
Ith= IM /2, thus delimiting a ROI with area AR, which
can exceed the cell dimension;

• the threshold Ith is increased/decreased by an amount
which is one half of the previous one if the ROI area AR

is, respectively, greater/smaller than a limit area AL; the
iteration is stopped when the difference between two

FIG. 6. Breast background composition of the database.
consecutive thresholds is less than I� gray levels;
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• the ROI is removed and stored for feature extraction
and classification;

• the processing is repeated for the following square cell.

The partition of the image into cells of size S does not limit
the search to ROIs smaller than S�S, as the ROI area de-
pends only of the final value of the threshold Ith. The values
of the S, AL, and I� parameters are defined in order to maxi-
mize the efficiency of the ROI hunter algorithm �percentage
of massive lesions correctly identified among those selected
by the radiologists�. The best values thus obtained are S
=200 pixels, AL=500�500 pixels, and I�=4 gray levels.

Figure 7 shows ROIs selected with the segmentation al-
gorithm �right�, together with the original image �left�.

The number of ROIs detected from each image is related
to the texture properties of the mammogram. All the ROIs
extracted from negative images are tagged as negatives,
while the ROIs from positive images can be labelled as true
positive �TP� or false positive �FP� depending if they meet or
not the following criterion: a minimal rectangle, fully con-
taining the ROI, is drawn with parallel sides with respect to
the ones of the image. Let �2Lx ,2Ly� be the sides of the
rectangle, �Xcad ;Ycad� the center coordinates of the ROI de-
tected by the CAD, and ��Xrad ;Yrad� ,Rrad� the center coordi-
nates and the radius of the radiologist-drawn boundary. We
consider the following tagging condition:

�Xrad − Xcad� � max�Rrad,Lx�

AND

�Yrad − Ycad� � max�Rrad,Ly� . �1�

For the following classification step only TP and negative
ROIs are used for both training and testing the neural net-
work, according to the cross-validation technique �see Sec.
III C�, while the FP ROIs are used for validation purposes
only. This is why we adopt a very strict condition like �1� to
define the TP ROIs. Looser criteria were tested and the per-
formance of the overall system worsened. In fact, looser con-
ditions lead to tag as TP many ROIs that are not well super-
imposed to the radiologist-drawn region. As a consequence,
the texture-based features used to describe the ROIs �see Sec.
III B� are not so accurate, thus causing the neural network to
work badly.

The efficiency of the ROI hunter, computed as the per-
centage of masses correctly detected among those found by
the radiologist, is 83.1%, corresponding to 1027 detected
masses, with respect to 1236 radiologist-drawn boundaries.
Correspondingly, 6.27 FPpI are obtained at this level, and the
average area of the selected ROIs is 15% of the total area of
the image. Table I reports the breakdown of the selected
ROIs.

B. Feature extraction

Texture analysis can be used either to segment the image
into areas indicating the mass or to measure textural features

to classify possible pathological regions. The successful ap-
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plications of such features to the detection of pathologies in
medical image analysis14,15 led us to adopt a similar ap-
proach in our CAD for the characterization of the selected
ROIs. The focus of the analysis is the computation of the
gray level co-occurrence matrix �GLCM�,13 also known as
spatial gray level dependence �SGLD� matrix.23 To this pur-
pose, we consider the minimal rectangular portion of the
image, which fully includes the ROI. As the name suggests,
the GLCM is constructed from the image by estimating the
pairwise statistics of pixel intensity, thus relying on the as-
sumption that the texture content information of an image is
contained in an overall or average spatial relationship be-
tween pairs of pixel intensities.13 A co-occurrence matrix M
is a G�G matrix, whose rows and columns are indexed by
the image gray levels i=1, . . . ,G, where G=2n for a n-bit
image. Each element pij represents an estimate of the prob-
ability that two pixels with a specified polar separation �d ,��
have gray levels i and j. Coordinates d and � are, respec-
tively, the distance and the angle between the two pixels i
and j. In their seminal paper, Haralik et al.13 considered only
displacements d=1 at quantized angles �=k� /4, with k=0,
1, 2, 3, thus having Md,��j , i�=Md,�+��i , j�. Symmetry is
achieved by averaging the GLCM with its transpose, thus
leading to invariance under � rotations, too. Textural features
can be derived from the GLCM and used in texture classifi-
cation in place of the single GLCM elements. Fourteen fea-
tures are introduced, related to textural properties of the im-

TABLE I. Breakdown of the selected ROIs.

TP FP Negative Total

1207 7642 13473 22322

FIG. 7. Left: the original ima
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age such as homogeneity, contrast, presence of organized
structure, complexity, and nature of gray tone transitions.
The values of these features are sensitive to the choice of the
direction �, given that the parameter d is fixed to 1. Invari-
ance under rotation should be restored in order to avoid de-
scribing two images, one obtained by rotating the other, with
different feature sets. This is achieved by considering aver-
age and range of each feature value over the � angles, thus
obtaining 28 textural variables, even if only a few of them
are used as inputs to the classifier.23–25

As the texture is gray tone independent, either the image
must be normalized or one should choose features that are
invariant under monotonic gray level transformation. As said
in Sec. II, the images of our database come from different
centers and no kind of normalization is applied. For this
reason we select, among all the GLCM features, the ones that
are invariant under monotonic gray tone transformation:

�1� energy:

f1 = 	
ij

pij
2 ; �2�

�2� entropy:

f2 = − 	
ij

pij ln�pij�; �3�

�3� information measures of correlation:

f3 =
f2 − H1

max�Hx,Hy�
; �4�

f4 = �1 − exp�− 2�H2 − f2���1/2, �5�

ight: the segmented image.
where
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Px�i� = 	
j

pij , �6�

Py�j� = 	
i

pij , �7�

H1 = − 	
ij

pij ln�Px�i�Py�j�� , �8�

H2 = − 	
ij

Px�i�Py�j�ln�Px�i�Py�j�� , �9�

Hx = − 	
i

Px�i�ln�Px�i�� , �10�

Hy = − 	
j

Py�j�ln�Py�j�� . �11�

For each of the above-mentioned features �f i�i=1,. . .,4, av-
erage and range are computed for the angles �=k� /4, with
k=0,1 ,2 ,3 and d=1, thus obtaining eight textural features.

C. Classification

A number of classifiers based on linear discriminant
analysis,26,27 artificial neural networks,28–30 and rule-based
methods31,32 have shown effectiveness in detection and diag-
nostic systems. We used a supervised two-layered feed-

TABLE II. Breakdown of the patterns for the cross validation: first set A is
used for training and set B for testing, then vice versa.

Set A Set B Validation

TP ROI 603 604 ¯

Negative ROI 604 603 13473
FP ROI ¯ ¯ 7642

Total 1207 1207 21115

FIG. 8. ROC curve for ROI-based classification. The area under the curve

�AUC� is Az=0.783±0.008.

Medical Physics, Vol. 33, No. 8, August 2006
forward neural network, trained with the gradient descent
learning rule33 for the ROI pattern classification:

�wij��� = − �
�E���
�wij

+ 	�wij�� − 1� , �12�

E��� = 1
2	

�

�t� − y��2, �13�

where the E��� function measures the error of the network
outputs y� in reproducing the targets t�=1,0, at iteration �,
and wij are the network weights. The second term in �12�,
known as momentum,34 represents a sort of inertia which is
added to quickly move along the direction of decreasing gra-
dient, thus reducing the computational time to the solution.
Different values of the momentum parameter 	 were tested
and the best trade-off between performance and computa-
tional time was reached for 	=0.1÷0.2. The learning rate
was �=0.01. A sigmoid transfer function was used:

g�x� =
1

1 + e−
x , �14�

with gain factor 
=1.
The network architecture consisted of Ni=8 input neurons

and one output neuron. The size of the hidden layer was
tuned in the range �Ni−1,2Ni+1� to optimize the classifica-
tion performance. All the TP ROIs �NTP=1207� and as many
negative ones were used to train the neural network. To make
sure that the negative training patterns were representative,
they were selected with a probability given by the distribu-
tion of the whole negative ROI set, in the eight-dimensional
feature space. With a random procedure we build up two sets

TABLE III. Values of the AUC at different number Nh of the hidden neurons.

Nh=8 Nh=10 Nh=12 Nh=14 Nh=16

Az 0.777 0.781 0.781 0.783 0.783
FIG. 9. CAD FROC curve for mass-based classification.
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�A and B�, each one made of 1207 patterns, which are used,
in turn, for both training and test, according to the cross-
validation technique:35 first, the network is trained with set A
and tested with set B, then the two sets are reversed. In
addition, we take care that the occurrence for each kind of
mass and tissue present in the database is balanced in set A
and set B, in order to train and test the network in the most
complete and correct way.

All the other patterns �negative ROIs not selected for the
training stage and FP� are used for validation only. The re-
sults presented in the following section �see ROC curves in
Sec. IV� refer to the classification of all the patterns at our
hand. The breakdown of the patterns for the cross validation
is reported in Table II.

IV. RESULTS AND DISCUSSION

The results are provided in terms of both ROC and FROC
curves. The ROC curve is particularly suitable when testing a
binary hypothesis:36 it is obtained by plotting the ROI sensi-
tivity against the ROI false positive rate �FPR�, at different
values of the decision threshold on the neural network out-
put. While the ROC curve displays the neural network per-
formance in classifying the ROI patterns, the FROC curve
provides the performance of the overall CAD system in de-
tecting the masses, as it reports the mass sensitivity against
the number of false positive masses per image �FPpI�.

Figure 8 displays a typical ROC curve obtained for the
pattern classification. The area under the curve �AUC� is
Az=0.783±0.008, where the error is computed as reported in
Hanley et al.37 The results are quite insensitive to the number
Nh of the hidden neurons as the different values of the AUC
obtained for different sizes of the hidden layer lie in the error
range �see Table III�.

As said in Sec. III, a number of ROIs can be superim-
posed to the same mass, according to the condition �1�,
though not overlapping among them. For this reason, it
should be more useful to provide the results in terms of the
mass sensitivity, defined as the fraction of masses correctly
detected by the CAD with respect to the total number of

TABLE IV. Maximal and mean values of the AUC for mass-based classifica-
tion.

SO BRO IRO RRO PS Others

Maximal AUC value 0.711 0.749 0.719 0.554 0.718 0.699
Mean AUC value 0.703 0.745 0.714 0.547 0.712 0.696

TABLE V. Maximal and mean values of the AUC for tissue-based classifica-
tion.

Dense Glandular Fibro-adipose

Maximal AUC value 0.749 0.704 0.654
Mean AUC value 0.744 0.697 0.648
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radiologist-drawn boundaries. In this way, the accuracy of
the overall CAD system can be assessed against the radiolo-
gist’s diagnosis. To this purpose, the following prescription is
adopted: a mass is correctly detected by the CAD system if
at least one ROI, among the ones superimposed to that mass,
is classified as positive by the neural network.

A free-response ROC �FROC� curve can be drawn �see
Fig. 9�, which reports the mass sensitivity of the overall sys-
tem against the number of false positive per image �FPpI�:
80% of mass sensitivity is achieved with 4.23 FPpI.

Both the neural network classification and the overall
CAD performance were evaluated for different kinds of
masses and tissues. The classification parameters were set in
order to maximize the performance, though changes in the
results are within the error range. Tables IV and V report the
maximal and the mean AUC values for both a mass-based
and a tissue-based classification. The values of the FPpI and
mass sensitivity for each of the main kinds of masses and
tissues present in the database are reported in Tables VI and
VII, respectively. When detecting RRO the performance of
the CAD decreases as a maximum of 70% sensitivity is
achieved with 5.16 FPpI.

As reported by the previous tables, the CAD is robust
against different kinds of both masses and tissues. As far as
the neural performance is concerned, as our AUC value Az

=0.783 lies in the range 0.7�AUC�0.9, the classifier can
be considered accurate enough.36 Each ROI is scored with
the neural output that represents the probability to contain a
mass. Our CAD system was tested on a digitized mammo-
graphic image database with a size much greater than the
ones6–10 described in the Introduction. Though direct com-
parison is unfeasible, since the performances of the algo-
rithms strongly depends on the database, it should be re-
marked that the high image statistics reduces the error in the
performance evaluation. Since our database spans a wide
range of image and mass kinds, this allows the following:

�1� to approach a situation which is close to the real clinic
one,

�2� to check the flexibility of the methods on images of
different quality, and

�3� to test the CAD with different cases to analyze.

TABLE VI. FPpI for the main kind of masses present in the database.

SO BRO IRO RRO PS Others

Sensitivity 80% 80% 80% 70% 80% 80%
FPpI 3.40 2.76 3.30 5.16 2.58 3.40

TABLE VII. FPpI at 80% sensitivity for each kind of tissue of the images of
the database.

Dense Glandular Fibro-adipose

FPpI 3.22 3.59 4.89
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V. CONCLUSIONS

It is well known that mammogram interpretation is a very
difficult task even for experienced radiologists; from this
point of view, CAD systems can be a useful tool to help
them.

Two main characteristics distinguish our CAD from the
other approaches: �1� the complete automatization of the
computation chain �segmentation→ feature extraction
→classification�, and �2� the large database of mammo-
graphic images used to evaluate the CAD performance. In
fact, the system is able to automatically select suspicious
portions of the mammogram that are more likely to contain a
mass and provide the cancer probability �i.e., mass sensitiv-
ity� at a certain value of FPpI. In addition, the performance
of the system was evaluated on a large database of mammo-
graphic images that were collected in different hospitals and
with different settings. The database includes breast masses
spanning a wide range of shapes and sizes, as well as the
main types of breast tissue, thus reproducing at best the typi-
cal situation of a screening program.
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